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Abstract

Background: Transcription has a substantial genetic control and genetic dissection of gene expression could help
us understand the genetic architecture of complex phenotypes such as meat quality in cattle. The objectives of the
present research were: 1) to perform eQTL and sQTL mapping analyses for meat quality traits in longissimus dorsi
muscle; 2) to uncover genes whose expression is influenced by local or distant genetic variation; 3) to identify
expression and splicing hot spots; and 4) to uncover genomic regions affecting the expression of multiple genes.

Results: Eighty steers were selected for phenotyping, genotyping and RNA-seq evaluation. A panel of traits related
to meat quality was recorded in longissimus dorsi muscle. Information on 112,042 SNPs and expression data on
8588 autosomal genes and 87,770 exons from 8467 genes were included in an expression and splicing quantitative
trait loci (QTL) mapping (eQTL and sQTL, respectively). A gene, exon and isoform differential expression analysis
previously carried out in this population identified 1352 genes, referred to as DEG, as explaining part of the
variability associated with meat quality traits. The eQTL and sQTL mapping was performed using a linear regression
model in the R package Matrix eQTL. Genotype and year of birth were included as fixed effects, and population
structure was accounted for by including as a covariate the first PC from a PCA analysis on genotypic data. The
identified QTLs were classified as cis or trans using 1 Mb as the maximum distance between the associated SNP
and the gene being analyzed. A total of 8377 eQTLs were identified, including 75.6% trans, 10.4% cis, 12.5% DEG
trans and 1.5% DEG cis; while 11,929 sQTLs were uncovered: 66.1% trans, 16.9% DEG trans, 14% cis and 3% DEG cis.
Twenty-seven expression master regulators and 13 splicing master regulators were identified and were classified as
membrane-associated or cytoskeletal proteins, transcription factors or DNA methylases. These genes could control
the expression of other genes through cell signaling or by a direct transcriptional activation/repression mechanism.

Conclusion: In the present analysis, we show that eQTL and sQTL mapping makes possible positional identification
of gene and isoform expression regulators.

Keywords: Cis effect, Differentially expressed gene, Expression master regulator, Meat quality, Splicing master
regulator and trans effect

Background
Little knowledge exists about transcription variation
patterns across the genome as well as how much of this
variability is under genetic control. Regulatory variation
is proposed as a primary factor associated with pheno-
typic variability [1] and based on some estimates, gene
expression can be classified as medium-highly heritable
[2]. Both eQTL and sQTL can be classified into cis
(local) and trans (distant) effects. A large fraction of
human genes is enriched for cis regulation and in some

cases, a cis effect is able to explain trans effects associ-
ated with its harboring gene. On the other hand, trans
regulation is more difficult to identify and explain [1],
but it allows for the identification of “hot spots”, which
are also known as master regulators, with transcriptional
control over a suite of genes usually involved in the
same biological pathway [3]. Therefore, trans regulation
might be suggested as the primary factor determining
phenotypic variation in complex phenotypes [2].
Since transcription has a substantial genetic control,

eQTL and sQTL mapping provides information about
genetic variant with modulatory effects on gene expres-
sion [4] which are useful for understanding the genetic
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architecture of complex phenotypes. This mapping al-
lows for uncovering of genomic regions associated with
transcription regulation of genes which can be related to
phenotypic variation when they colocalize with QTLs
(cis and trans effects), providing a molecular basis for
the phenotype-genotype association [5]. The eQTL and
sQTL mapping can also uncover master regulators and
suites of genes related to a particular phenotype (trans
effect). Using an eQTL approach, Gonzales-Prendes [6]
investigated the genetic regulation of porcine genes asso-
ciated with uptake, transport, synthesis, and catabolism
of lipids. About 30% of these genes were regulated by
cis- and/or trans-eQTLs and provided a first description
of the genetic regulation of porcine lipid metabolism.
Steibel et al. [7] identified 62 unique eQTLs in porcine
loin muscle tissue and observed strong evidence for local
regulation of lipid metabolism-related genes, such as
AKR7A2 and TXNDC12. Higgins et al. [8] carried out
an eQTL analysis for residual feed intake, average daily
gain and feed intake to identify functional effects of
GWAS-identified variants. The eQTL analysis allowed
them to identify variants useful both for genomic selec-
tion of RFI and for understanding the biology of feed
efficiency. Genome sequence-based imputation and as-
sociation mapping identified a cluster of 17 non-coding
variants spanning MGST1 highly associated with milk
composition traits [9] in cattle. A subsequent eQTL
mapping revealed a strong MGST1 eQTL underpinning
these effects and demonstrated the utility of RNA
sequence-based association mapping.
The objectives of the present research were: 1) to per-

form eQTL and sQTL mapping analyses for meat quality
traits in longissimus dorsi muscle; 2) to uncover genes
whose expression is influenced by local or distant gen-
etic variation; 3) to identify expression and splicing hot
spots; and 4) to uncover genomic regions affecting the
expression of multiple genes (multigenic effects).

Results
On average, 39.8 million paired-end RNA-Seq reads per
sample were available for mapping, and out of these, 34.9
million high-quality paired-end RNA-Seq reads were
uniquely mapped to the Btau_4.6.1 reference genome. The
mean fragment inner distance was equal to 144 ± 64 bps.

Expression QTL mapping
A total of 8377 eQTLs were identified in the present
population (Fig. 1). The most frequently identified types
of eQTLs were trans (75.6%) followed by cis (10.4%)
(Fig. 2a). Only 12.5% of the eQTLs were classified as
DEG trans and 1.5% as DEG cis. The majority of SNPs
with trans and DEG trans effects were associated with
the expression of only one gene (76.2 and 84.0%,
respectively).

Expression cis and DEG cis eQTL analysis
A total of 868 cis and 125 DEG cis eQTLs were uncovered.
SNPs rs110591035 and rs456174577 were cis eQTLs and
were highly associated with expression of LSM2 Homolog,
U6 Small Nuclear RNA And MRNA Degradation Associated
(LSM2) (p-value = 5.8 × 10− 9) and Sterol O-Acyltransferase 1
(SOAT1) (p-value = 4.4 × 10− 7) genes, respectively.
Additional file 1 presents all significant eQTLs based
on the effective number of independent tests.

Expression trans and DEG trans eQTL analysis, and master
regulators
Twenty-seven SNPs (Table 1) distributed in 22 clus-
ters (Fig. 1) were identified and used to map poten-
tial master regulator genes. Figure 3 shows a
network for the identified master regulators and
their 674 associated genes (Additional file 2). Out of
the 27 master regulators, nine membrane-associated
proteins, three cytoskeletal proteins, four transcrip-
tion factors, and one DNA methylase were identified.
No clear classification was evident for the remaining
10 genes. Additional file 3 shows least-squares mean
plots for SNP effect on transformed gene counts for
seven of the identified master regulators.

Multigenic effects based on the eQTL analysis
Table 2 shows the number of eQTLs identified by gene
where the expression of the top genes seems to be influ-
enced by multiple genomic regions (multigenic effects).
The Solute Carrier Family 43 Member 1 (SLC43A1), Unc-
51 Like Autophagy Activating Kinase 2 (ULK2), Myosin
Light Chain 1 (MYL1), PHD Finger Protein 14 (PHF14),
and Enolase 3 (ENO3) are the top five genes based on the
number of eQTL regulators.

Splicing QTL mapping
The cis and trans sQTLs identified in the present analysis
are presented in Fig. 4 and highlight the effects on DEG.
A total of 11,929 sQTLs were uncovered. The most fre-
quently identified type of sQTL was trans (Fig. 2b). Trans,
DEG trans, cis and DEG cis effects were identified in 66.1,
16.9, 14.0 and 3.0% of the cases, respectively. The majority
of SNPs with trans and DEG trans effects were associated
with the expression of only one exon (88.4 and 88.9%,
respectively).

Splicing cis and DEG cis analysis
Additional file 1 shows all cis and DEG cis sQTLs un-
covered using the effective number of independent tests.
Since the number of significant cis sQTLs detected using
these thresholds was very high, only associations with a
p-value ≤2 × 10− 4 were used for further analysis. A total
of 2222 cis sQTLs were identified and two of the most
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Fig. 2 Frequency of each type of eQTL (a) and sQTL (b) identified. The expression QTL mapping was performed for meat quality related traits in
longissimus dorsi muscle

Fig. 1 Expression QTL mapping for meat quality in longissimus dorsi muscle using 112,042 SNPs and expression data from 8588 genes. A total of
8377 eQTLs were identified. Each dot represents one eQTL and the dot size represents the significance level for each association test. Red
triangles locate each cluster of hot spots described in Table 1
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interesting genes are Titin (TTN) and TEK Receptor
Tyrosine Kinase (TEK).

Splicing trans and DEG trans sQTL analysis, and master
regulators
Out of the 13 splicing master regulator genes identified
in the present analysis (Table 3), four encode for proteins
located in the extracellular space. Four other genes encode
for plasma and/or organelle associated membrane or cyto-
skeletal proteins, and two other genes encode for tran-
scription factors. Mechanisms associated with splicing
regulation for the remaining three master regulators were
not evident. A total of 231 genes (Additional file 4) were

associated with these 13 master regulators and were
included in a regulation network (Additional file 5).
The master regulators ZNF804A, ALAD, OR13F1, and
ENSBTAG00000000336 were determined simultaneously
as expression and splicing master regulators. Markers in-
side these four genes were able to explain variability in the
fraction of exon counts in 28 (ZNF804A), 192 (ALAD), 22
(OR13F1) and 25 (ENSBTAG00000000336) genes across
the genome. The most important uncovered master regu-
lators associated with splicing were selected for further
discussion.
Two different clusters were uncovered in the Func-

tional Annotation Clustering analysis using the whole

Table 1 Expression QTL master regulators identified in longissimus dorsi muscle. The SNP location (BTA: bp), SNP name, cluster
number from Fig. 1, minor allele frequency, number of eQTLs associated with each master regulator, the proportion of DEG eQTLs,
and the harboring or closest gene are shown for each eQTL master regulator

SNP location SNP name Clustera MAF
(%)

Number % DEG Harboring gene or closest genes b

of eQTLs eQTLs

1: 119,758,395 rs378343630 1 4 62 0.0 TM4SF1

2: 11,594,176 rs208227436 2 3 26 7.7 ZNF804A

2: 25,653,736 rs211476449 3 3 36 13.9 GAD1

3: 102,943,677 rs135786834 4 2 32 0.0 KDM4A

5: 27,001,953 rs441241989 5 8 27 18.5 CSAD

5: 27,834,250 rs110130901 5 8 25 24.0 KRT7

5: 105,380,442 rs207649022 6 24 76 69.7 NTF3 - KCNA5

7: 92,439,344 rs110618957 7 2 34 8.8 POLR3G - GPR98

8: 95,625,807 ARS_BFGL_N-GS_65636 8 3 111 8.1 ENSBTAG00000047350 - OR13F1

8: 104,345,143 rs378706947 8 2 22 9.1 ALAD

10: 8,457,276 Bovine-HD1000002801 9 30 27 74.1 PDE8B

11: 46,753,639 rs211218494 10 8 37 13.5 PSD4

11: 46,785,388 rs209448226 10 8 37 13.5 5S_rRNA - PAX8

13: 54,009,694 rs135144232 11 4 24 8.3 ENSBTAG00000011638

14: 74,732,269 rs208451702 12 3 24 8.3 RUNX1T1

15: 79,202,054 rs41781450 13 37 20 35.0 OR4X1 - OR4S1

15: 79,564,333 rs109630111 13 24 36 2.8 ENSBTAG00000035487

16: 62,544,863 rs456174577 14 2 36 0.0 TOR1AIP1

17: 30,508,078 BTB_00676236 15 41 34 23.5 INTU - FAT4

18: 56,858,212 rs41891374 16 5 20 20.0 C18H19ORF41 - MYH14

18: 57,361,426 rs383445569 16 4 41 17.1 KLK4

18: 61,257,126 No SNP name 17 49 133 2.3 ENSBTAG00000000336 - ENSBTAG00000046961

19: 42,754,262 rs377935001 18 2 34 0.0 TTC25

22: 16,367,834 rs110289782 19 11 24 50.0 ENSBTAG00000030533 - ZNF445

26: 12,930,282 rs42085062 20 4 23 26.1 PCGF5

27: 31,921,721 rs136162903 21 3 25 0.0 KCNU1

28: 4,877,558 rs207999887 22 5 34 5.9 SNORA25 - SIPA1L2
aCluster number used in Fig. 1
bBolded genes were selected as master regulators when the associated SNP was intergenic; underlined gene names were identified as expressed in skeletal
muscle in the present analysis.
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list of regulated genes across clusters (Additional file 6).
Some of the identified terms in these clusters were
Carbon metabolism, ATP binding and Nucleotide-
binding, showing that genes in these clusters might have
a complex splicing regulation.

Multigenic effects based on the sQTL analysis
A variety of genes seem to have a complex transcriptional
control based on the ratio of exon counts (Table 2) and
some of them are: Titin (TTN), Nebulin (NEB), Elongin B

(TCEB2), CAMP Responsive Element Binding Protein 5
(CREB5) and Upstream Transcription Factor 2, C-Fos
Interacting (USF2).

Discussion
Expression QTL mapping
Expression cis and DEG cis eQTL analysis
LSM2 and SOAT1 harbor some highly significant cis
eQTLs. LSM2 binds to other members of the ubiquitous
and multifunctional family Sm-like (LSM) in order to
form RNA-processing complexes. These complexes are

Fig. 3 a Network of 27 expression master regulators (master regulator in green; differentially expressed master regulator in red) and 674
regulated genes (light blue) or differentially expressed regulated genes identified using eQTL mapping. b Percentage of trans and DEG trans
regulated genes in the clusters NTF3, PDE8B, ZNF445, and PAX8
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involved in processes such as stabilization of the spliceo-
somal U6 snRNA, mRNA decay and guide site-specific
pseudouridylation of rRNA [10]. Lu et al. [11] identified
two missense polymorphisms in SOAT1 associated with
cholesterol in plasma and triglyceride levels in mice
since they are able to increase enzyme activityG. None
of these two genes were identified as DEG, therefore
they must be more involved in skeletal muscle
homeostasis.

Expression trans and DEG trans eQTL analysis, and master
regulators
The 27 master regulators identified in the eQTL analysis
could contribute to gene expression control by promot-
ing cell signaling or by direct transcriptional activation/
repression mechanisms. A number of structural proteins
and transcription regulators were identified as master

regulators. Neurotrophin 3 (NTF3), Glutamate Decarb-
oxylase 1 (GAD1), FAT Atypical Cadherin 4 (FAT4),
Transmembrane 4 L Six Family Member 1 (TM4SF1),
Transmembrane 4 L Six Family Member 1 (TM4SF1)
and Keratin 7 (KRT7) encode for transmembrane or
cytoskeletal proteins. Zinc Finger Protein 804A (ZNF804A),
Paired Box 8 (PAX8), Lysine Demethylase 4A (KDM4A)
and RUNX1 Translocation Partner 1 (RUNX1T1 or
Myeloid Translocation Gene on 8q22-MTG8) encode for
transcription factors or histone demethylases. NTF3,
TM4SF1, and KDM4A are further discussed.
NTF3 was identified as a master regulator in the

present analysis since rs207649022 was able to explain
variation in the expression of 76 genes (Table 1), 69.7%
of which were DEG genes (Fig. 3b). Since NTF3 was as-
sociated with a number of DEGs, this master regulator
was able to explain variability in gene expression associ-
ated with meat quality. The Neurotrophic Factor gene
family regulates myoblast and muscle fiber differenti-
ation. It also coordinates muscle innervation and func-
tional differentiation of neuromuscular junctions [12].
Mice with only one functional copy of the NTF3 gene
showed a smaller cross-sectional fiber area and more
densely distributed muscle fibers [13]. Upregulation of
NTF3, stimulated by the transcription factor POU3F2, is
present during neuronal differentiation [14]. The neo-
cortex has multiple layers originated by cell fate restric-
tion of cortical progenitors and NTF3 induces cell fate
switches by controlling a feedback signal between post-
mitotic neurons and progenitors. Therefore, changes in
NTF3 expression can modulate the amount of tissue
present in each neocortex layer [15].
NTF3 was identified in a previous study as highly asso-

ciated with cooking loss [16] pointing out that markers
inside this locus are able to explain variation at both the
phenotype and gene expression level. This implicates
NTF3 as a positional and functional gene with a poten-
tial role in meat quality. These effects are probably not
due to cis regulation on NTF3 given that the number of
reads mapped to this gene was extremely low and it did
not surpass the threshold used in order to be included
in the DEG analysis (average = 6.7, min = 0; max = 23).
However, NTF3 could be actively expressed in earlier
developmental stages and then expressed at a basal level,
exerting control on expression regulation later on when
cellular morphology has been completely established. A
Functional Annotation Clustering analysis for the NTF3
regulated genes indicated that the master regulator
NTF3 could be involved in the regulation of specific
mechanisms and pathways related to Mitochondrion,
Transit peptide and Mitochondrion inner membrane
(Additional file 6).
The expression of 62 genes was associated with

rs378343630, a marker located in the TM4SF1 master

Table 2 Number and type of multigenic effects identified by
the eQTL and sQTL analysis performed in longissimus dorsi
muscle

eQTL analysis sQTL analysis

Gene N eQTL Type Gene N sQTL Type

SLC43A1 126 Trans TTN 324 DEG Trans

LOC100848703 64 Trans TXN2 99 Trans

ULK2 43 Trans NEB 63 DEG Trans

MYL1 40 Trans TCEB2 43 Trans

ENO3 36 Trans LOC100851645 36 DEG Trans

PHF14 36 Trans CREB5 33 DEG Trans

PKM 32 Trans USF2 33 DEG Trans

ZBTB12 31 Trans MYH7 28 Trans

PGAM2 30 Trans PON3 26 Trans

ACTA1 28 Trans MYOM3 26 Trans

SNX19 25 Trans RSPO2 25 Trans

LDHA 25 Trans METTL22 25 Trans

RPL5 23 Trans MAP 3 K14 25 Trans

ALDH4A1 23 DEG Trans UBR3 25 Trans

PLSCR3 22 Trans PAPD4 25 Trans

CHURC1 22 Trans BAZ1A 24 Trans

TNNI2 22 Trans ITPR1 23 Trans

GPD1 21 Trans MYH1 23 Trans

TMTC2 21 Trans SVIL 22 Trans

UCK2 21 DEG Trans ZDHHC4 22 Trans

LRRC42 20 Trans FILIP1L 22 DEG Trans

HSPG2 21 Trans

UBR4 21 Trans

KTN1–2 21 Trans

DST 21 DEG Trans

MYBPC1 20 Trans
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Fig. 4 Splicing QTL mapping for meat quality in longissimus dorsi muscle using 112,042 SNPs and expression data from 87,770 exons (8467
genes). A total of 11,929 sQTLs were identified. Each dot represents one sQTL and the dot size represents the significance level for each
association test. Red triangles show the location of one or several hot spots described in Table 3

Table 3 Splicing QTL master regulators identified in longissimus dorsi muscle. The SNP location (BTA: bp), SNP name, cluster number
from Fig. 4, minor allele frequency (MAF), number of sQTLs associated with each master regulator, the proportion of DEG sQTLs, and
the harboring or closest gene are shown for each eQTL master regulator

SNP location SNP name Clustera MAF
(%)

Number % DEG Harboring gene or closest genesb

of sQTLs sQTLs

1: 144,604,558 rs381222773 1 7 33 9.1 PDE9A - WDR4

2: 11,594,176 rs208227436 2 3 28 17.9 ZNF804A

2: 84,792,003 rs208053623 3 4 21 19.0 DNAH7

4: 5,827,343 rs381476620 4 42 21 33.3 ZPBP - VWC2

8: 92,924,658 rs382101207 5 3 23 13.0 RNF20

8: 93,336,078 BTB_01634267 5 4 20 20.0 PLEKHB2 - SNORA19

8: 95,762,113 rs136343964 5 3 22 13.6 OR13F1

8: 104,345,143 rs378706947 6 2 192 27.1 ALAD

14: 57,184,022 rs210798753 7 2 24 50.0 PKHD1L1

15: 25,536,733 rs209617551 8 2 34 35.3 SNORA3

15: 35,729,304 rs382501844 9 4 33 9.1 NUCB2 - ENSBTAG00000032859

16: 75,296,157 rs41821837 10 4 20 20.0 SYT14 - DIEXF

18: 61,257,126 11 49 25 44.0 ENSBTAG00000000336 - ENSBTAG00000046961
aCluster number used in Fig. 4
bBolded genes were selected as master regulators when the associated SNP was intergenic; underlined gene names were identified as expressed in skeletal
muscle in the present analysis
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regulator. This gene encodes a plasma transmembrane
protein and belongs to a gene family involved in signal
transduction processes; thus, it modulates development,
growth, and motility [17]. TM4SF1 physically interacts
with the membrane and some cytoskeleton-associated
proteins to form cell projections named ‘nanopodia’
[18], which are described as frequently identified in mul-
tiple types of cancer. This gene is highly expressed in
pancreatic cancer cells and stimulates metastasis by up-
regulating Discoidin Domain Receptor Tyrosine Kinase 1
(DDR1), Matrix Metallopeptidase 2 (MMP2) and Matrix
Metallopeptidase 9 (MMP9) [19]. In liver, TM4SF1 re-
duced apoptosis and promoted cell migration by upregu-
lating MMP-2, MMP-9 and VEGF, and downregulating
Caspase-3 and Caspase-9 [17]. Upregulation of miR-9
produces downregulation of TM4SF1, MMP2, MMP9
and VEGF in colorectal carcinoma, inhibiting cell migra-
tion and invasion [20]. In esophageal cancer stem-like
cells, downregulation of miR-141 increases TM4SF1 ex-
pression, self-renewal ability and promotes cell invasion
[21]. The Functional Annotation Clustering analysis for
TM4SF1 found an overrepresentation of the transcrip-
tion, DNA-templated term (Additional file 6); thus,
TM4SF1 could be involved in the regulation of specific
mechanisms and pathways associated with transcription
in longissimus dorsi muscle. Neither TM4SF1 nor any
gene in this cluster was identified as DEG; therefore they
might be more related to skeletal muscle homeostasis
than meat quality.
The KDM4A cluster has 32 regulated genes associated

with rs135786834; KDM4A encodes a histone lysine
demethylase able to modify trimethylated H3-K9/K36 to
dimethylated products, contributing to gene expression,
cellular differentiation and cancer development [22]. His-
tone H3K9 methylation promotes the silencing of muscle-
specific genes in proliferating myoblasts and derepression
of these genes is required to initiate muscle differentiation.
Expression of a KDM4A isoform named DN-JMJD2A is
upregulated during differentiation of myoblasts into myo-
tubes promoting myotube formation and transcriptionally
activating muscle-specific genes such as MyoD [23]. The
only DEG master regulator identified in the present ana-
lysis was KDM4A and this master regulator harbors
rs135786834, an SNP associated with expression of 32
genes by trans association. Therefore, changes in the ex-
pression of KDM4A did not show evidence of promoting
the expression of genes related to meat quality.

Multigenic effects based on the eQTL analysis
Some of the most interesting genes identified in this
analysis were ULK2, MYL1, and PHF14. Forty-three
SNPs were associated with ULK2 expression. ULK2
encodes a serine/threonine-protein kinase required for
autophagy under nutrient-deprived conditions [24].

Downregulation of ULK2 activates mTOR c1 signaling,
promoting cell proliferation [25]. The MYL1 gene en-
codes a fast-twitch regulatory light chain of myosin in
skeletal muscle; downregulation of MYL1 alters myocyte
morphology and muscle structure, and generates con-
genital myopathy in zebrafish [26]. A total of 40 and 36
polymorphisms were associated with the expression of
MYL1 and PHF14, respectively. PHF14 is ubiquitously
expressed and its protein has multiple PHD fingers, a
domain present in chromatin-binding proteins which are
able to recognize particular epigenetic marks on histone
tails. The PHF14 knockout in mice generates neonatal
lethality and severe structural changes in multiple organs
especially lungs. PHF14 is an epigenetic regulator re-
quired for the normal development of multiple organs
[27], and it is probably involved in skeletal muscle
homeostasis.

Splicing QTL mapping
Splicing cis and DEG cis analysis
The TTN gene harbors a highly significant DEG cis
sQTL (p-value = 2.0 × 10− 7) and encodes a central sarco-
meric protein. Some TTN mutations are associated with
skeletal-muscle diseases such as tibial muscular dys-
trophy [28]. Fernandez-Marmiesse et al. [29] identified a
non-sense mutation in a TTN exon only present in a
fetal skeletal isoform and associated with a neuromuscu-
lar disorder; histologically, this mutation promotes
sarcomeric deposition of a filamentous material. A DEG
cis sQTL (p-value = 5.1 × 10− 7) was identified in the
TEK gene. This gene encodes a receptor for Angiopoie-
tin-1 (ANGPT1), and its signaling pathway is critical for
migration, sprouting and survival of endothelial cells;
TEK activates the SHC Adaptor Protein 1 (SHC1), a
protein involved in triggering the Ras/mitogen-activated
protein kinase pathway, regulating migration and endo-
thelial organization [30]. Therefore, cis sQTLs in TTN
and TEK could explain variation in the expression of these
genes and variation in meat quality-related phenotypes.

Trans and DEG trans splicing QTL analysis, and master
regulators
Similarly, as the identified expression master regulators, the
splicing master regulators can be grouped as transcription
regulators and structural proteins. Small Nucleolar RNA,
H/ACA Box 3A (SNORA3), Small Nucleolar RNA, H/ACA
Box 19 (SNORA19), Ring Finger Protein 20 (RNF20), and
Zinc Finger Protein 804A (ZNF804A) could be classified as
transcription regulators. Phosphodiesterase 9A (PDE9A),
Olfactory Receptor Family 13 Subfamily F Member
(OR13F1), Dynein Axonemal Heavy Chain 7 (DNAH7) and
Von Willebrand Factor C Domain Containing 2 (VWC2)
can be identified as structural proteins.
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Small non-coding RNAs such as SNORA3 and
SNORA19 modulate stability, folding and interaction
with proteins and more recently, functions such as
mRNA editing, alternative splicing and posttranscrip-
tional gene silencing were discovered [31]. However, no
clear function of SNORA3 and SNORA19 is described.
Exon expression of 34 exons from 17 genes and 20
exons from 15 genes were associated with the polymor-
phisms rs209617551 (SNORA3) and BTB_01634267
(SNORA19), respectively.
Expression of 23 exons from 19 genes was associated

with rs382101207, an SNP located in Ring Finger Protein
20 (RNF20). Upregulation of RNF20 stimulates H2B
monoubiquitination and methylation at H3K4 and
H3K79; it promotes expression of Homeobox genes, a
group of transcription factors [32]. RNF20 also regulates
expression of H2A and H2B histones, p53, several proto-
oncogenes and promotes cell migration and tumorigen-
esis [33]. The RNF20/RNF20 (Bre1 complex) is docu-
mented as a tumor suppressor by upregulating a set of
tumor suppressor genes and by contributing to genomic
stability maintenance. Bre1 deficient cells present a high
frequency of DNA double-strand breaks (DSB), and
abundant aberrant RNA-DNA structures (R-loops), indi-
cators of replication stress and genomic instability [32].
Pierce et al. [1] theorized that a high proportion of

trans associations are caused by cis effects. However, no
cis QTL was identified in any expression or splicing
master regulator. This result suggests that, in the present
analysis, trans effects might contribute significantly to
phenotypic variation related to skeletal muscle homeo-
stasis and meat quality.

Multigenic effects based on the sQTL analysis
The large number of sQTLs identified in genes like
TTN (324) and NEB (63) could be related to gene
size, since these genes are 275 and 219 kb long,
respectively, which would increase the probability of
being involved in trans regulation. On the other hand,
some relatively short genes such as TCEB2 (9.9 kb)
and USF2 (3.9 kb) also had a large number of sQTLs
(43 and 33, respectively) indicating a possible complex
splicing regulation.
A total of 324 and 67 polymorphisms were associated

with TTN and NEB ratio exon counts, respectively. TTN
and NEB are involved in assembly and mechanical activ-
ity of striated muscles. Both proteins are large sarcomere
filament-binding proteins expressed in skeletal muscle
and multiple splicing events in the bovine homologous
are described. In the human brain, NEB acts as an actin
filament stabilizer and regulates neuronal length. It is
also involved in myofibrillogenesis, modulates thin fila-
ment length and allows proper muscle contraction [34].

TTN, NEB, and USF2 were identified as DEG; therefore,
sQTL regulation could contribute to phenotypic variabil-
ity associated with meat quality in longissimus dorsi and
skeletal muscle homeostasis.

Gene expression and splicing regulation mechanisms by
plasma and organelle associated proteins
The cell cytoskeleton provides cellular mechanical con-
straints and extracellular matrix stiffness [35]. However,
structural proteins are involved in multiple biological
processes different from the organizational ones, with
signaling and cell fate being some of the most important.
Cell signaling is crucial since it orchestrates cellular
responses to different microenvironmental stimuli, and
transcription repression-activation and splicing regula-
tion are influenced by signaling proteins. A number of
receptors, transmembrane linkers, cytoskeletal fibers and
membrane-associated transcription factors were previ-
ously associated with transcription repression-activation.
The OR4A47, GPR98, PDE9A, OR13F1 and SYT14

master regulators were also described as transmembrane
protein-coding genes and this type of molecule is in-
volved in cell signaling processes. Pandey et al. [36] re-
ported that estrogen can signal using diverse receptors,
the G Protein-Coupled Estrogen Receptor 1 (GPR30)
being one of them. Stimulation of GPR30 by estrogen
activates a transcription factor network that upregulates
Cellular Communication Network Factor 2 (CCN2),
promoting proliferation and cell migration. The master
regulators GAD1 and TM4SF1 encode transmembrane
linkers similar to the integrin family. Integrins can
modulate signal transduction cascades involved in cell
survival, proliferation, differentiation and organ develop-
ment [37]. The dimer ITGA1-ITGB1 can stall Epidermal
Growth Factor Receptor (EGFR) signaling by stimulating
Protein Tyrosine Phosphatase, Non-Receptor Type 2
(PTPN2). The cytoplasmic domain of ITGA1 interacts
with PTPN2 and decreases EGFR phosphorylation after
Epidermal Growth Factor (EGF) stimulation [38].
The cytoskeletal protein-coding genes KRT7, FAT4,

MYH14, and DNAH7 were identified as master regulators.
Some cytoskeletal proteins might drive transcription regula-
tion and promote cellular mechanisms such as growth and
apoptosis. Flouriot et al. [35] reported that the actin net-
work can regulate Myocardin Related Transcription Factor
A (MRTFA) subcellular localization, a protein involved in
growth-quiescence switch. High F/G actin ratio or mutant
MRTFA cells showed higher global biosynthetic activity
and open chromatin state, associated with extensive histone
modifications. In Drosophila, Hippo tumor suppressor
pathway controls organ size, and proteins such as Yorkie
(human homologous Yes Associated Protein 1 -YAP), a
transcriptional coactivator, and Hpo and Warts kinases
(human homologous Serine/Threonine Kinase 3 -STK3-
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and Large Tumor Suppressor Kinase 1 -LATS1, respectively)
belong to this pathway. YAP is negatively regulated by
STK3 and LATS1. F-actin accumulation promotes over-
growth in Drosophila imaginal discs through modulating
the activity of the Hippo pathway [39].

Applicability of the present results and future analysis
The present results provide biological support to some
of the previously identified pQTLs related to complex
phenotypes in cattle and could contribute to discovery
of potential causative polymorphisms. pQTL and eQTL
colocalization for NTF3 (cooking loss) and GPR98 (ten-
derness) was evident in the present population [16];
however, more research is required in order to be able
to determine if these genes harbor actual causative
markers associated with meat quality. The use of causa-
tive polymorphisms in genomic prediction is the ideal
scenario since it is not affected by recombination events
between the actual pQTL and the marker being geno-
typed, over time. In this respect, research showed that
polymorphisms associated with expression regulation
such as eQTLs and sQTLs can explain an important
proportion of the genetic variance present on complex
phenotypes in cattle.
Lopdell et al. [4] identified a set of 3695 distinct eQTL

variants for milk, fat and protein yield and showed that they
have increased the predictive ability for milk composition
related phenotypes. DGAT1, MGST1, and GPAT4 were
identified as the most highly predictive regions. A 1 Mbp
region nearby DGAT1 harbors three polymorphisms that
are able to explain a high amount of the SNP variance in
the set. Xiang et al. [40] classified 17,669,372 imputed vari-
ants into 30 sets of markers. This classification included
categories such as inter-species conserved markers, poly-
morphisms associated with metabolic traits (several milk
metabolites), expression regulation related polymorphisms
(gene and exon expression QTLs, sQTLs, and allele-specific
expression QTLs), and markers with evolutionary roles. An
index was constructed for each marker using the amount
of genetic variance explained by them for a total of 34 com-
plex traits in cattle. Conserved markers, polymorphisms as-
sociated with metabolic traits and expression regulation
related markers were able to explain the highest amount of
genetic variance. Later, this index was applied to another
population composed of 7551 individuals and it was deter-
mined that high ranking variants significantly increased
genetic variance estimates and genomic prediction accur-
acies for milk, fat and protein yield.
However, other research has found difficult to illus-

trate the potential use of eQTL and sQTL mapping on
the predictive ability for complex phenotypes. The re-
search of Berg et al. [41] was focused on identifying
pQTLs caused by eQTL for milk, fat and protein yield,

and calving interval. No strong evidence of association
between pQTL and eQTL effects were evident.
The results reported by Berg et al. [41] could indicate

that most eQTLs are able to explain a very small fraction
of the variance associated to pQTLs; however, it is im-
portant to highlight that lack of power for eQTL effect
estimation and long-range LD could contribute the diffi-
culty of identifying pQTLs and eQTL colocalization.
Additionally, the relationship between pQTL and eQTL
effect could be dependent on the genetic architecture of
the phenotype being assessed and its degree of transcrip-
tional control. In this respect, Lopdell et al., [4] noticed
that predictions for milk, fat and protein yield using
eQTL variants did not surpass R2, of 0.5 since all the
QTL effects present in these traits are not due to expres-
sion effects. Furthermore, eQTLs in related tissues or
eQTLs present at different stages of development could
contribute to these phenotypes as well.
In order to identify causative polymorphisms, the

present results require validation through eQTL and
sQTL mapping on additional populations with Angus,
Brahman and mixed breed composition. After validation,
candidate genes would also need to be confirmed using
in-vitro and in-vivo analysis. For the assessment of pro-
teins described as eQTL and sQTL associated transcrip-
tion factors, techniques such as Electrophoretic mobility
shift assay (EMSA) and Chip-seq could be used in order
to identify actual DNA-protein interaction able to regu-
late gene expression of the potential target genes. To
support eQTL and sQTL master regulator activity for
structural proteins able to activate signaling cascades
and gene expression, knockout and knockdown trials
could verify if these proteins could module this bio-
logical activity. Finally, to identified cis regulations,
reporter gene experiments can be used.

Conclusions
The mapping analysis performed in this study provides a
holistic insight into the regulatory network architecture
in longissimus dorsi muscle in an Angus-Brahman
population.
Multiple cis eQTLs and sQTLs effects were identified

and genes such as LSM2, SOAT1, TTN and TEK are a
few examples of potential expression and splicing regula-
tory genes. A total of 27 expression and 13 splicing mas-
ter regulator genes were uncovered, mainly cytoskeletal
or membrane-associated proteins, transcription factors
and DNA methylases. Cytoskeletal proteins provide
mechanical constraints to the cell, but they are also in-
volved in processes such as signaling. Signaling is crucial
since it coordinates cellular responses to different stim-
uli, and transcription repression-activation and splicing
regulation are influenced by structural proteins. The
ZNF804A, ALAD, OR13F1 and ENSBTAG00000000336
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genes were identified as both expression and splicing
master regulators.
It is shown that eQTL and sQTL mapping makes pos-

sible positional identification of potential expression and
splicing master regulators. The present analysis identi-
fied master regulators associated with gene and isoform
expression in skeletal muscle but was also focused on
uncovering master regulators related to genes whose ex-
pression is able to explain variability in meat quality-
related phenotypes (DEG genes) in cattle. The genes
PDE8B, NTF3, ZNF445, and OR4S1 can be highlighted
as eQTL master regulators associated with a high pro-
portion of DEG genes. The sQTL master regulators
PKHD1L1, ENSBTAG00000000336, SNORA3, and
VWC2 were the regulators most frequently associated
with DEG genes. These master regulators could contrib-
ute to phenotypic variability through modulating the ex-
pression of key genes whose expression is able to explain
variability in the complex meat quality phenotype.

Methods
Cattle population and phenotypic data
The University of Florida Institutional Animal Care and
Use Committee number 201003744 approved the present
research protocol. A total of 120 steers from the University
of Florida Beef Unit multibreed Angus-Brahman herd born
between 2013 and 2014 were used in this study [42]. This
population can be classified into six different groups based
on breed composition. In terms of Angus composition, the
grouping was the following: 1 = 100 to 80%; 2 = 79 to 65%;
3 = 64 to 60% (Brangus); 4 = 59 to 40%; 5 = 39 to 20%;
6 = 19 to 0% [42].
These animals were kept with their dams on bahia-

grass pastures (Paspalum notatum) until weaning and
received a complete mineral supplement (UF University
Special Hi-Cu Mineral, University of Florida, Gainesville,
Florida), and bermudagrass (Cynodon dactylon) hay and
cotton-seed (Gossypium spp.) meal in the winter months
(mid-December to mid-March). The calves were kept on
bahiagrass pastures and fed bahiagrass hay, concentrate
(1.6–3.6 kg of soy hull pellets per day; 14.0% CP; 488
Pellet Medicated Weaning Ration, Lakeland Animal
Nutrition, Lakeland, Florida) and a mineral supplement
until yearling.
Yearling steers were transported to a contract feeder

(2014: Suwannee Farms, O Brien, Florida; 2015: Quincey
Farms, Chiefland, Florida), where they were provided a
standard feedlot diet based on corn, protein, vitamins,
and minerals until they reached a subcutaneous fat
thickness over the ribeye of approximately 1.27 cm [43].
Cattle were transported to a commercial processing
facility (FPL Food LLC., Augusta, Georgia) 1 day prior to
harvest. Steers were harvested under USDA-FSIS inspec-
tion using captive bolt stun. The average slaughter

weight was 573.34 ± 54.79 kg at 12.91 ± 8.69 months.
After splitting the carcass, five to ten g of the longissimus
dorsi muscle was collected, snapped-frozen in liquid ni-
trogen and stored at − 80 °C until RNA was extracted.
Phenotypes recorded on these steers included tender-

ness, connective tissue and juiciness determined by a
sensory panel, and marbling, cooking loss and WBSF
according to the American Meat Science Association
Sensory Guidelines [44]. Marbling was assessed on the
ribeye muscle at the 12th/13th rib interface after ribbing
the carcass and was recorded on a numerical scale by
visual appraisal 48 h postmortem. The grading was as fol-
lows: Practically Devoid = 100–199, Traces = 200–299,
Slight = 300–399, Small = 400–499, Modest = 500–599,
Moderate = 600–699, Slightly Abundant = 700–799,
Moderately Abundant = 800–899, Abundant = 900–999.
From each animal, two 2.54 cm steaks from the 12th/

13th rib interface of the longissimus dorsi muscle were
collected, aged for 14 days at 4 °C, and stored at − 20 °C
at the Meat Science Laboratory of the University of
Florida. Frozen steaks were allowed to thaw at 4 °C for
24 h and cooked to an internal temperature of 71 °C on
an open-hearth grill.
After cooking, the first steak was cooled at 4 °C for 18 to

24 h and six cores with a 1.27-cm diameter and parallel to
the muscle fiber were sheared with a Warner-Bratzler head
attached to an Instron Universal Testing Machine (model
3343; Instron Corporation, Canton, MA). The Warner-
Bratzler head moved at a cross head speed of 200mm/min.
The average peak load (kg) of six cores from the same ani-
mal was analyzed. The weight lost during cooking was re-
corded and cooking loss was expressed as a percentage of
the cooked weight out of the thaw weight. The second
steak was cooked and assessed by the sensory panel. The
sensory panel consisted of eight to 11 trained members,
and six animals were assessed per session. Two 1 × 2.54 cm
samples from each steak were provided to each panelist.
Sensory panel measurements analyzed by the sensory pan-
elists included: tenderness (8 = extremely tender, 7 = very
tender, 6 =moderately tender, 5 = slightly tender, 4 =
slightly tough, 3 =moderately tough, 2 = very tough, 1 = ex-
tremely tough), juiciness (8 = extremely juicy, 7 = very juicy,
6 =moderately juicy, 5 = slightly juicy, 4 = slightly dry, 3 =
moderately dry, 2 = very dry, 1 = extremely dry), and con-
nective tissue (8 = none detected, 7 = practically none, 6 =
traces amount, 5 = slight amount, 4 =moderate amount,
3 = slightly abundant, 2 =moderately abundant, 1 = abun-
dant amount). For each phenotype, the average score by
steak from all members of the panel was analyzed.
Marbling, WBSF, cooking loss, juiciness, tenderness and

connective tissue were included in a principal component
(PC) analysis using PROC FACTOR procedure of SAS
[45], and a composited meat quality index for each
animal was constructed using the first three PCs. The
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meat quality index was determined using the following
formula:

Meat quality indexi ¼
X3

j¼1

PCSij�PCW j
� �

Where PCSij is the PC score of the animal i for the
PCj and PCWj is the weight of the PCj (eigenvalue). The
amount of variance explained by PC1, PC2 and PC3 were
44.26, 20.04 and 13.29%, respectively. The 120 animals
were ranked using the meat quality index and 80
animals with extreme values were selected and used for
RNA sequencing.

Genotyping and data quality control
Genomic DNA was extracted from blood using the
DNeasy Blood & Tissue kit (Qiagen, Valencia, CA) and
stored at − 20 °C. All animals were genotyped with the
commercial GGP Bovine F-250 chip (GeneSeek, Inc.,
Lincoln, NE) which contains 221,077 single nucleotide
polymorphisms (SNPs). After excluding markers with a
minor allele frequency lower than 3% (at least 2 animals
out of 80 for the less frequent genotype) and a calling
rate < 0.9, a total of 112,042 SNPs were included in the
association analysis. Quality control was implemented
with JMP genomics 6.0 software [46]. The genotype data
is available in the European Variation Archive website,
accession number PRJEB24746.

RNA extraction, RNA-seq library preparation and
sequencing
Total RNA was extracted from muscle using TRIzol re-
agent (Thermo Fisher Scientific, Waltham, MA, USA)
according to the manufacturer’s protocol (Invitrogen,
catalog no. 15596–026). RNA concentration was mea-
sured by NanoDrop 2000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA) and integrity was
verified by formaldehyde gel. The mRNA samples were
stored at − 80 °C. Total RNA samples were sent to
RAPiD Genomics LLC (Gainesville, Florida, United
States) for mRNA isolation, RNA-seq library preparation
and sequencing procedures. mRNA isolation was per-
formed using oligo-dT attached magnetic beads prior to
its reverse transcription and synthesis of double-
stranded cDNA. One RNA-seq library for each sample
was constructed, multiplexed, and sequenced based on
protocols of Illumina HiSeq 3000 PE100 platform
(Illumina, San Diego, CA, USA). All samples were se-
quenced on 8 lanes, generating 2 × 101 nts paired-end
reads. RNA-seq data are available at the European
Nucleotide Archive, accession number PRJEB31379.

Read quality control, paired-end read alignment and
paired-end read counting
The pipeline described by Korpelainen et al. (2014) [47]
was used to generate an index for the Btau_4.6.1 refer-
ence genome and to create a gene, exon and isoform ex-
pression files. Tophat 2.1.0 [48], Bowtie2 2.3.4 [49],
Picard [50] and samtools [51] were used to generate the
Btau_4.6.1 index. Eight forward and eight reverse
FASTQ files per sample were concatenated in separated
FASTQ files and analyzed with FastQC 0.9.6 [52] to
check quality of the raw sequence reads. Read trimming
was performed with PRINSEQ 0.20.4 software [53] using
3 bp sliding windows and 20 as phred threshold. Reads
with more than 2 ambiguous bases were excluded from
the analysis. Cutadapt version 1.8.1 software [54] was
used to trim adapters and reads shorter than 50 nts were
excluded.
Tophat 2.1.0 [48] and Bowtie2 2.3.4 [49] were used to

perform paired-end read mapping against the Btau_4.6.1
reference genome [55]. HTSeq 0.9.1 software [56] was
used to estimate gene paired-end read counts for all anno-
tated genes, including paired-end reads uniquely mapped
to known chromosomes. Cufflinks 2.2.1.1 [57, 58] was
used to assemble transcripts and estimate transcript abun-
dance in FPKM (Fragments Per Kilobase of exon per
Million fragments mapped). Exon counts per gene were
determined using the RNA-Sequencing differential ex-
pression analysis pipeline DEXSeq [59]. Genes and exons
with less than 10 counts across all 80 samples were ex-
cluded from the analysis. Indexing and sorting of the
alignment files were performed using Samtools 1.9 soft-
ware [51].

Differentially expressed genes, exons and isoforms
associated with meat quality
Differential expression analysis was performed to iden-
tify genes, exons and isoforms whose expression was as-
sociated with meat quality. The procedures described by
Seo et al. [60], Love et al. [61] and Jia et al. [62] were
used to identify differential expression. Genes and exons
with less than 10 counts, and isoforms with less than 10
FPKM across samples were excluded from the analysis.
The R package edgeR [63] was used to obtain normal-

ized gene counts by applying the trimmed mean of M-
values (TMM) normalization method. The R packages
sfsmisc and MASS [64–66] were used to apply Huber’s
M-estimator based robust regression including all 80
samples used for RNA sequencing. The meat quality
index was used as a response variable. Gene expression
was treated as a covariate and year of birth of the animal
as fixed effects. A PCA analysis was carried out with the
“PCA for population structure” work-flow of JMP [46],
and population structure was accounted for by including
its first PC as covariate in the model. Genes whose
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association test had a p-value lower than 0.05 were in-
cluded in the DEG list. The same analysis was performed
for exon expression, and genes with at least three associ-
ated exons were included in the DEG list.
Out of the 80 samples used for RNA sequencing, 40

(20 high and 20 low performance based on WBSF, ten-
derness or marbling) were included in the DEG analysis.
The R package DESeq2 version 1.20.0 [61] was used to
identify DEG genes, including year of birth, breed group
and a categorical classification of each animal based on
phenotype as fixed effects in the analysis. The categorical
classification was as follows: tender vs tough using
WBSF or tenderness and high vs low using marbling.
Genes with a Benjamini-Hochberg adjusted p-value
lower than 0.05 were determined as DEG for WBSF and
lower than 0.1 as DEG for tenderness and marbling. The
DEG isoform analysis was performed with MetaDiff [62].
Breed group, year of birth, and the same categorical
classification based on phenotype fitted in the DESeq2
analysis were included as fixed effects in the asso-
ciation model.
A total of 8799 genes, 93,349 exons, and 4471 isoforms

from 957 genes were included in the DEG analysis.
Expression of 1352 genes was identified as associated
with meat quality traits using the differential expression
analysis (Additional file 7).

eQTL and sQTL mapping
The R package Matrix eQTL was used to perform the
QTL mapping [67] using 112,042 SNPs and 8588 genes
(eQTL mapping) or 87,770 exons from 8467 genes
(sQTL mapping) located in autosomes. A linear regres-
sion model was used where the SNP genotypes were
coded as 0, 1 or 2. For the eQTL analysis, gene counts
were transformed using the tool varianceStabilizing-
Transformation from the R package DESeq2 version
1.20.0 [61] in order to solve heteroscedasticity [8]. In the
sQTL analysis, we used the fraction of counts mapped
to a specific exon out of the total counts mapped to its
gene [68]. This fraction was converted to an integer
value by keeping three decimal digits and multiplying by
1000 and then transformed using the tool varianceStabil-
izingTransformation. Gene and fraction exon counts
were included as response variables, and SNP genotype
and year of birth of the animal as fixed effects. The first
PC from the “PCA for population structure” work-flow
of JMP [46] was included as a covariate in the model to
control for population structure. A cis QTL was defined
as an SNP located no more than 1Mb upstream of the
transcription start site or downstream of the transcrip-
tion end site of an annotated gene, and cis and trans
QTLs were analyzed separately.
Bonferroni trans and cis p-value thresholds were

calculated using the effective number of independent

tests implemented in the R function “simpleM_Ex” [69].
For the trans associations, the total number of tests was
112,042, and 42,246 was its corresponding effective
number of independent tests. Therefore, the p-value cor-
rected for multiple testing for the trans effects was equal
to 1.18 × 10− 6 for both, trans eQTLs and sQTLs. How-
ever, in order to maximize the number of eQTLs and
sQTLs hotspots a less stringent threshold was used. The
final trans association thresholds used for eQTLs and
sQTLs were 1 × 10− 5 and 1 × 10− 6, respectively. An
effective number of independent tests per each gene was
calculated in order to determine cis p-value thresholds.
An in-house script written in Java was used to group all
SNPs by gene and to generate the file inputs for the R
function “simpleM_Ex” [70]. The Bonferroni cis p-value
thresholds are presented in the Additional file 8. How-
ever, since the number of cis sQTLs was very high using
these thresholds, a more stringent threshold was imple-
mented. The final cis sQTL association threshold was
2 × 10− 4.
Polymorphisms associated with expression of at least

20 genes in the case of eQTL and at least 20 exons in
the case of sQTL were considered hot spots. The har-
boring gene or the adjacent gene in which biological
function was somewhat related to transcription regula-
tion was defined as master regulators.

Functional annotation clustering analysis
A functional classification analysis using DAVID Bio-
informatic Resources 6.8 server [71] was performed for
each cluster of genes associated with a master regulator.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6520-5.

Additional file 1. Cis eQTL and sQTL effects identified in longissimus
dorsi muscle sampled from a multibreed Angus-Brahman herd. SNP infor-
mation about 112,042 markers and expression data from 8588 genes and
87,770 exons from 8467 genes were included in the association assay.
Out of the 8588 genes included, expression of 1352 loci was previously
identified as related to meat quality traits and denoted as DEG genes.

Additional file 2. List of 674 regulated genes and their respective
expression master regulator identified by the eQTL association mapping.
The eQTL mapping was performed in longissimus dorsi muscle sampled
from a multibreed Angus-Brahman herd. SNP information about 112,042
markers and expression data from 8588 genes were included in the
association assay.

Additional file 3. Least-square mean plots for SNP effect on
transformed gene counts of some regulated genes. Genes regulated by
the master regulators TM4SF1 (rs378343630), GAD1 (rs211476449), PCGF5
(rs42085062), RUNX1T1 (rs208451702), KLK4 (rs383445569), CSAD
(rs441241989) and OR4S1 (rs41781450) are shown.

Additional file 4. List of 231 regulated genes and their respective
splicing master regulators identified by the sQTL association
mapping. The sQTL mapping was performed in longissimus dorsi
muscle sampled from a multibreed Angus-Brahman herd. SNP
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information about 112,042 markers and expression data from 87,770
exons (8467 genes) were included in the association assay

Additional file 5. 4A. Network for 13 splicing master regulators and 231
regulated genes identified using sQTL mapping. 4B. Percentage of trans
and DEG trans regulated genes in the clusters ALAD, PKHD1L1 and
SNORA3. Network for 13 splicing master regulators and percentage of
trans and DEG trans regulated genes

Additional file 6. Enriched terms identified by DAVID Bioinformatic
Resources 6.8 server functional classification analysis. These terms were
found enriched when performing analysis inside each expression or
splicing master regulator cluster, or across regulated genes. The QTL
mapping was performed in longissimus dorsi muscle sampled from a
multibreed Angus-Brahman herd.

Additional file 7. List of DEG and expressed genes. A list of 1352 genes
considered as DEG genes for meat quality in the present analysis, and
8799 genes identified as expressed in longissimus dorsi muscle in a
multibreed Angus-Brahman herd.

Additional file 8. Bonferroni cis thresholds by gene. The number of
tests, number of effective tests and the Bonferroni adjusted p-value is
presented by each gene used in the association analysis.
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